A Statistical Method for Regularizing Nonlinear Inverse Problems

نویسندگان

  • Chad Clifton Hammerquist
  • Chad Hammerquist
چکیده

Inverse problems are typically ill-posed or ill-conditioned and require regularization. Tikhonov regularization is a popular approach and it requires an additional parameter called the regularization parameter that has to be estimated. The χ method introduced by Mead in [8] uses the χ distribution of the Tikhonov functional for linear inverse problems to estimate the regularization parameter. However, for nonlinear inverse problems the distribution of the Tikhonov functional is not known. In this thesis, we extend the χ method to nonlinear problems through the use of Gauss Newton iterations and also with Levenberg Marquardt iterations. We derive approximate χ distributions for the quadratic functionals that arise in Gauss Newton and Levenberg Marquardt iterations. The approach is illustrated on two ill-posed nonlinear inverse problems: a nonlinear cross-well tomography problem and a subsurface electrical conductivity estimation problem. We numerically test the validity of assumptions in this approach by demonstrating that the theoretical χ distributions agree closely with actual distributions. The nonlinear χ method is implemented in two algorithms, based on Gauss Newton and the Levenberg Marquardt methods, that dynamically estimate the regularization parameter using χ tests. We compare parameter estimates from the nonlinear χ method with estimates found using Occams inversion and the discrepancy principle on the cross-well tomography problem and on the subsurface electrical conductivity estimation problem. The χ method is shown to provide similar parameter estimates to estimates found using the discrepancy principle and is computationally less expensive. In addition, the χ method provided much better parameter estimates than Occams Inversion. iii

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularizing Properties of a Truncated Newton-cg Algorithm for Nonlinear Inverse Problems

This paper develops truncated Newton methods as an appropriate tool for nonlinear inverse problems which are ill-posed in the sense of Hadamard. In each Newton step an approximate solution for the linearized problem is computed with the conjugate gradient method as an inner iteration. The conjugate gradient iteration is terminated when the residual has been reduced to a prescribed percentage. U...

متن کامل

On the Regularizing Levenberg-marquardt Scheme in Banach Spaces

By making use of duality mappings and the Bregman distance, we propose a regularizing Levenberg-Marquardt scheme to solve nonlinear inverse problems in Banach spaces, which is an extension of the one proposed in [6] in Hilbert space setting. The method consists of two components: an outer Newton iteration and an inner scheme. The inner scheme involves a family of convex minimization problems in...

متن کامل

Solving a nonlinear inverse system of Burgers equations

By applying finite difference formula to time discretization and the cubic B-splines for spatial variable, a numerical method for solving the inverse system of Burgers equations is presented. Also, the convergence analysis and stability for this problem are investigated and the order of convergence is obtained. By using two test problems, the accuracy of presented method is verified. Additional...

متن کامل

A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method

The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...

متن کامل

An Iterative Thresholding Algorithm for Linear Inverse Problems with a Sparsity Constraint

We consider linear inverse problems where the solution is assumed to have a sparse expansion on an arbitrary preassigned orthonormal basis. We prove that replacing the usual quadratic regularizing penalties by weighted ppenalties on the coefficients of such expansions, with 1 ≤ p ≤ 2, still regularizes the problem. Use of such p-penalized problems with p < 2 is often advocated when one expects ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012